\(\int \frac {1}{(a+b x^4)^{7/4}} \, dx\) [1170]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 11, antiderivative size = 83 \[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\frac {x}{3 a \left (a+b x^4\right )^{3/4}}-\frac {2 \sqrt {b} \left (1+\frac {a}{b x^4}\right )^{3/4} x^3 \operatorname {EllipticF}\left (\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right ),2\right )}{3 a^{3/2} \left (a+b x^4\right )^{3/4}} \]

[Out]

1/3*x/a/(b*x^4+a)^(3/4)-2/3*(1+a/b/x^4)^(3/4)*x^3*(cos(1/2*arccot(x^2*b^(1/2)/a^(1/2)))^2)^(1/2)/cos(1/2*arcco
t(x^2*b^(1/2)/a^(1/2)))*EllipticF(sin(1/2*arccot(x^2*b^(1/2)/a^(1/2))),2^(1/2))*b^(1/2)/a^(3/2)/(b*x^4+a)^(3/4
)

Rubi [A] (verified)

Time = 0.02 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {205, 243, 342, 281, 237} \[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\frac {x}{3 a \left (a+b x^4\right )^{3/4}}-\frac {2 \sqrt {b} x^3 \left (\frac {a}{b x^4}+1\right )^{3/4} \operatorname {EllipticF}\left (\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right ),2\right )}{3 a^{3/2} \left (a+b x^4\right )^{3/4}} \]

[In]

Int[(a + b*x^4)^(-7/4),x]

[Out]

x/(3*a*(a + b*x^4)^(3/4)) - (2*Sqrt[b]*(1 + a/(b*x^4))^(3/4)*x^3*EllipticF[ArcCot[(Sqrt[b]*x^2)/Sqrt[a]]/2, 2]
)/(3*a^(3/2)*(a + b*x^4)^(3/4))

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 237

Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]))*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 243

Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Dist[x^3*((1 + a/(b*x^4))^(3/4)/(a + b*x^4)^(3/4)), Int[1/(x^3*
(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 342

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {x}{3 a \left (a+b x^4\right )^{3/4}}+\frac {2 \int \frac {1}{\left (a+b x^4\right )^{3/4}} \, dx}{3 a} \\ & = \frac {x}{3 a \left (a+b x^4\right )^{3/4}}+\frac {\left (2 \left (1+\frac {a}{b x^4}\right )^{3/4} x^3\right ) \int \frac {1}{\left (1+\frac {a}{b x^4}\right )^{3/4} x^3} \, dx}{3 a \left (a+b x^4\right )^{3/4}} \\ & = \frac {x}{3 a \left (a+b x^4\right )^{3/4}}-\frac {\left (2 \left (1+\frac {a}{b x^4}\right )^{3/4} x^3\right ) \text {Subst}\left (\int \frac {x}{\left (1+\frac {a x^4}{b}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )}{3 a \left (a+b x^4\right )^{3/4}} \\ & = \frac {x}{3 a \left (a+b x^4\right )^{3/4}}-\frac {\left (\left (1+\frac {a}{b x^4}\right )^{3/4} x^3\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {a x^2}{b}\right )^{3/4}} \, dx,x,\frac {1}{x^2}\right )}{3 a \left (a+b x^4\right )^{3/4}} \\ & = \frac {x}{3 a \left (a+b x^4\right )^{3/4}}-\frac {2 \sqrt {b} \left (1+\frac {a}{b x^4}\right )^{3/4} x^3 F\left (\left .\frac {1}{2} \cot ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )\right |2\right )}{3 a^{3/2} \left (a+b x^4\right )^{3/4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.40 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.67 \[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\frac {x+2 x \left (1+\frac {b x^4}{a}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {3}{4},\frac {5}{4},-\frac {b x^4}{a}\right )}{3 a \left (a+b x^4\right )^{3/4}} \]

[In]

Integrate[(a + b*x^4)^(-7/4),x]

[Out]

(x + 2*x*(1 + (b*x^4)/a)^(3/4)*Hypergeometric2F1[1/4, 3/4, 5/4, -((b*x^4)/a)])/(3*a*(a + b*x^4)^(3/4))

Maple [F]

\[\int \frac {1}{\left (b \,x^{4}+a \right )^{\frac {7}{4}}}d x\]

[In]

int(1/(b*x^4+a)^(7/4),x)

[Out]

int(1/(b*x^4+a)^(7/4),x)

Fricas [F]

\[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {7}{4}}} \,d x } \]

[In]

integrate(1/(b*x^4+a)^(7/4),x, algorithm="fricas")

[Out]

integral((b*x^4 + a)^(1/4)/(b^2*x^8 + 2*a*b*x^4 + a^2), x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.53 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.43 \[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\frac {x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {7}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac {7}{4}} \Gamma \left (\frac {5}{4}\right )} \]

[In]

integrate(1/(b*x**4+a)**(7/4),x)

[Out]

x*gamma(1/4)*hyper((1/4, 7/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(7/4)*gamma(5/4))

Maxima [F]

\[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {7}{4}}} \,d x } \]

[In]

integrate(1/(b*x^4+a)^(7/4),x, algorithm="maxima")

[Out]

integrate((b*x^4 + a)^(-7/4), x)

Giac [F]

\[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{\frac {7}{4}}} \,d x } \]

[In]

integrate(1/(b*x^4+a)^(7/4),x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(-7/4), x)

Mupad [B] (verification not implemented)

Time = 5.65 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.45 \[ \int \frac {1}{\left (a+b x^4\right )^{7/4}} \, dx=\frac {x\,{\left (\frac {b\,x^4}{a}+1\right )}^{7/4}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{4},\frac {7}{4};\ \frac {5}{4};\ -\frac {b\,x^4}{a}\right )}{{\left (b\,x^4+a\right )}^{7/4}} \]

[In]

int(1/(a + b*x^4)^(7/4),x)

[Out]

(x*((b*x^4)/a + 1)^(7/4)*hypergeom([1/4, 7/4], 5/4, -(b*x^4)/a))/(a + b*x^4)^(7/4)